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Supplementary Note

PMD Hypomethylation in immortalized cell lines

We saw PMD hypomethylation in almost all cultured cell lines except for ESCs, iPSCs
and their derived cell lines (Fig. 4 Group ESC). Interesting observations included: 1)
hESCs (including H1, H9 and HUES64 and 4star) and most hESC-derived progenitor
cells were heavily methylated without visually detectable PMD, most likely due to
hyperactivity of DNMT3B'2. The stark contrast between the primary ICM sample and
the heavily methylated hESCs suggests that cultured hESCs may reflect a later stage of
post-implantation embryonic development, where expression of the DNMT3A and
DNMT3B methyltransferases can help to maintain high levels of DNA methylation
despite prolonged culture (Fig. 5a). 2) Two H1-derived Mesenchymal Stem Cells
(MSCs) showed clear PMD structure (Supplementary Fig. 7a). 3) iPSCs, also with
active DNMT3B? and with very little loss of PMD methylation in most samples, had
residual trace PMDs in some samples (e.g., the 19.11 cell line) with respect to fore-skin

fibroblasts from which they originated (Supplementary Fig. 7a).

We also note that although both ESCs and the proliferative tumors were high in the
expression of DNMT3s compared to other normal tissues of non-embryonic origin, the
level of expression in ESCs was higher than the most proliferative tumors. For example,
the expression of DNMT3B in H1 hESC was higher than other cancer cell lines and
primary tissues assayed in the ENCODE project by over ten folds (Supplementary Fig.

18a). Embryonic Carcinoma, sharing a similar early embryonic origin with ESCs, also
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had the highest expression of both DNMT3A and DNMT3B compared to other cancer
types in TCGA (Supplementary Fig. 18b). Like hESCs, these embryonic carcinomas
did not manifest strong PMD structures either (Supplementary Fig. 12). Since DNMTs
are part of a large DNA replication program, the high DNMT3s in most proliferative
tumors are passively driven by the fast cell turn-over of the cancer cells, while ESCs
actively express DNMT3s to maintaining their pluripotency. This explains the seemingly
contradictory observations of a strong PMD structure in the proliferative tumors and lack
of PMD structure in ESCs, despite both having high DNMT3s. This is supported by the
the high expression of other replication program component genes (such as UHRF1
and other cell cycle dependent genes) in the highly proliferating tumors with severe

PMD hypomethylation (Fig. 79).

Improved analysis of HMD/PMD structure

Our focus here has been on cell-type invariant PMDs, which were useful for
investigating general properties of methylation loss over time. The 49% of the genome
we identified as occurring within “Common PMDs” (using the SD>0.15 method) contains
essentially all of the cell-type-invariant PMD regions that we identified previously?. We
defined these PMDs by exploiting the inherent variance in PMD hypomethylation levels
across large cohorts of samples, which was the only cross-sample feature bimodally
distributed between HMDs and PMDs. Under this definition, for example, the core tumor
group (containing only solid tumors) had almost the same degree of shared PMDs with
blood malignancies (82%) as it did with other solid tumors not from the core set (85%)

(Supplementary Fig. 8). We do note that the power of this method might not apply to
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sample cohorts with little variation in hypomethylation levels, but it worked well for all

the sample groups we examined here.

Our focus on common PMDs does not discount the importance of cell-type-specific
PMDs. The work of our group and others showed that about 25% of PMDs were cell-
type specific*®, and our results here do not conflict with that. Others have established
that cell-type specific cancer PMDs can be associated with gene expression
differences, and distinguish different molecular subtypes of medulloblastoma and
Atypical Teratoid/Rhabdoid tumors®~’. Work from Fortin and Hansen showed that these
cell-type-specific PMD differences corresponded to cell-type-specific topological domain
and chromatin structure differences using Hi-C and DNase data from the same cell

liness.

We observed deep PMD hypomethylation in the methylome of T cells from a 103-year-
old individual (Fig. 6a). Interestingly, in a previous study the hypomethylation patterns
could not be conclusively called as PMDs even for the 103 year old sample, likely due
to the noise introduced by CpGs other than solo-WCGWs'™. We expect that
incorporation of solo-WCGW sequence features can be used to improve current
methods for such cell-type-specific PMD detection, including kernel-based', HMM-
based' and multi-scale based'®, and methods for methylation array data®. Explicitly
modeling and subtracting PMD-related hypomethylation will reduce noise and enhance
our ability to detect changes in TET-mediated demethylation processes affecting short-

range elements such as promoters, enhancers, and insulators.
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While the discovery of solo-WCGW CpGs was a significant advance, the ability to
detect differential PMDs in normal cell types with low levels of methylation loss, will
remain a challenge. This is an important challenge to tackle, as it may allow the
identification of PMD-associated cell-of-origin markers in cancer, which can be
combined with mutational-signature-based cell-of-origin markers®. PMD domain
structure can also act as a useful proxy for 3D topological changes and other chromatin
features in clinical disease samples where Hi-C or other direct mapping methods are
not feasible due to the quantity or quality of intact chromatin available. PMDs also mark
regions of gene silencing, and thus can help to infer the the gene expression history of
the cells being sampled. For instance, Hovestadt et al. showed that PMDs in
medulloblastoma tumors reflected subtype-specific expression silencing in normal brain

precursor cells'.

Stability of rank-based correlation between methylomes

We performed a rank-based analysis of 792 genomic 100kb bins from chromosome 16
(Fig. 5) to measure the HMD/PMD structure in normal tissues at different
developmental stages. The rank correlations had only minor variations between replica
or closely related samples (Supplementary Fig. 19a) and the patterns were stable

when using bins from different chromosomes (Supplementary Fig. 19b)

Alternative explanation of PMD hypomethylation
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While our analysis implicated replication timing as the most strongly associated
genomic determinant of PMD methylation loss, replication timing is in practice very
tightly linked to the Hi-C compartment "B" and the nuclear lamina based on our work
and the work of others'1%16 While the re-methylation window model is mechanistically
attractive, we cannot rule out an alternative nuclear localization model (Fig. 8g), where
methylation loss is due to compositional differences between the two nuclear
compartments independent of replication timing, including differential activity of DNMTs or
other chromatin regulatory factors. Indeed, various proteins are known to be regulated
at the level of sub-nuclear compartment localization, such as TRIM28 (KAP-1)"". It
should be noted that the link between DNMT3B and H3K36me3 has been primarily
described in mouse ES cells, which express a different isoform of Dnmt3b. Therefore, it
remains possible that other DNMTs also contribute to the high methylation levels within
early replicating regions. DNMT3A would be such a candidate, given that early
replicating regions become hypomethylated upon Dnmt3a loss in a mouse lung cancer
model’8. Recent work suggests that the heterochromatin and euchromatin nuclear
compartments have a physical barrier created by liquid heterochromatin droplets formed

by HP1-mediated phase separation'%2,

Relevance of the PMD sequence signature to somatic and germline mutational
landscape

To investigate any potential impact of the PMD sequence signature on introducing
cytosine deamination mutations in the CpG dinucleotides, we studied the relative

proportion of somatic mutations that are within certain tetranucleotide sequence
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contexts and certain numbers of neighboring CpGs. We compared somatic CpG to TpG
mutations reported in an early gastric cancer whole-genome sequencing experiment
and indeed confirmed that solo-WCGWs within late replicating PMDs had a lower CpG
to TpG mutation rate compared with other sequence context (Supplementary Fig.
16a). However, we also observed higher somatic mutation density overall in PMDs
compared to HMDs, confirming earlier reports?!, possibly due to compensating effect
from transcription-coupled DNA repair??>. More systematic investigation incorporating
differential repair efficiencies will be necessary to investigate the effects solo-WCGW
hypomethylation may have in shaping the single nucleotide mutational signatures

observed in cancer and in evolution.

While only a limited number of samples were available for gametogenesis, we observed
dramatic PMD hypomethylation in at least one germline cell type, the Germinal Vesicle,
M-I Oocyte (Fig. 5b). This opens the possibility that local sequence determinants,
HMD/PMD structure, or H3K36me3 distribution may play a role in methylation-sensitive
deamination rates in the germline, and thereby help shape genome evolution. We
studied de novo CpG->TpG mutations reported in a study of 1,548 Icelandic trios. We
found that these de novo CpG->TpG mutations in the maternal germline were indeed
depleted at CpGs in the WCGW context and with low local CpG density
(Supplementary Fig. 16b). The trend is not as apparent in paternal de novo mutations,
consistent with lack of strong PMD structure in sperm (Fig. 5b). The standing
distribution of human and mouse CpGs is also consistent with the hypothesis that

tendency of losing methylation in solo-WCGW context in the germline may exert a
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protective role for these CpGs against deamination (Supplementary Fig. 16c-d). Such

mechanisms have been proposed for other mutational processes?3, and the well-defined

genomic constraints on the hypomethylation process described here will allow these

types of analysis.
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Supplementary Figure 1 (a) PMD calls by methpipe on tumor and adjacent normal
samples reported in this study (left) and cutoff for choosing shared MethPipe PMDs
(Note that this only used here and in Fig. 1, the definition of PMDs were updated later

based on cross tumor SDs) from these methpipe calls (right). (b) Receiver Operating
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Characteristic (ROC) curve showing prediction power of hypomethylation tendency with
different sizes of the sequence window in defining Solo-CpGs in human (N=26,752,698
CpGs). (c¢) Methylation average of CpG dinucleotides in 10 tetranucleotide sequence
context stratified by neighboring CpG number and genomic territory (PMD or HMD).

Each panel includes 390 WGBS samples.
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224  Supplementary Figure 2 (a) Violin plots of CpG methylation in 24 sequence contexts
225 for all 47 TCGA WGBS samples (39 tumors and 8 normals) reported in this study.
226  Elements of the violin plots represents the DNA methylation beta value of each CpG; (b)

227  Methylation distribution of CpGs in 24 sequence contexts from 27 matched HM450 data



228 of the TCGA WGBS samples. Element of the violin plots represents the DNA
229 methylation beta value of each CpG.

230
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232  Supplementary Figure 3 (a) Methylation average of CpG dinucleotides in 24 sequence

233 contexts (rows) of 390 WGBS samples; (b) Methylation average of CpG dinucleotides in
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239

24 sequence context (rows) of 206 mouse WGBS samples; (¢) Methylation distribution
of CpG dinucleotides in 24 sequence contexts in one oocyte and two spermatozoa
samples in human and in mouse respectively. N=26,752,698 CpGs for human and
N=20,383,610 CpGs for mouse. Element of the violin plots represents the DNA

methylation beta value of each CpG in the specific sequence context.
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241 Supplementary Figure 4 (a) Heatmap showing DNA methylation beta value of
242 chromosome 16p in 49 TCGA WGBS samples (40 tumors and 9 adjacent normal
243  samples, including colorectal cancer and matched normal from Berman et al. 2012
244  Nature Genetics) downsampled from 1x to 0.01x; (b) Heatmap showing DNA
245 methylation beta value of chromosome 16p in 20 single-cell whole genome bisulfite
246  sequencing (scWGBS) of HL60 cell line under vitamin D treatment as well as two bulk
247 WGBS data sets of 50ng (data from Farlik et al. 2015 Cell Reports, see also
248  Supplementary Table 1).
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259 Supplementary Figure 6 Overlap of PMD definition in this work with previous studies
260 from colorectal cancer and IMR90 cell lines with overlapping area approximating
261  numbers of overlapping base pairs.
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Supplementary Figure 7 (a) Multiscaled view of Solo-WCGW methylation in iPSC and
ESC-derived cells, showing deep PMD in H1-derived MSCs and residual PMD in iPSCs.
(b) Multiscale view of Solo-WCGW CpG methylation in T, B and plasma cells of
different varieties, showing deep PMD hypomethylation in regulatory T cells, germinal
center B cells, memory T, B cells and plasma cells. (¢) Multiscale view of Solo-WCGW

methylation in myeloid cells, showing deeper PMD in megakaryocytes and erythroblasts.
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273  Supplementary Figure 8 Distribution of cross-sample SDs for solo-WCGW methylation
274  in all genomic 100kb bins of the core tumor group (studied in Fig 2b-c) plotted on Y-axis,
275 against SD distribution from (a) 50 other blood malignancies; and (b) 10 other solid

276  tumors, plotted on X-axis. The figure shows the concordance of SD-based PMD

277  definitions based on the core tumors and other tumors.
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Supplementary Figure 11 Solo-WCGW methylation average in common HMD and
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Supplementary Figure 13 (a) Difference of PMD and HMD methylation average of
6,214 Solo-WCGW probes in 749 adjacent normal samples assayed in TCGA on
HM450 platform. (b) Comparison of normal (N=749) vs tumor (N=9,072) HMD-PMD
methylation based on Solo-WCGW CpGs in 33 cancer types in TCGA with lines indicate
standard deviation. The sample sizes are: ACC(N=80); BLCA(N=419); BRCA(N=799);

CESC(N=309); CHOL(N=36); COAD(N=316); DLBC(N=48); ESCA(N=186);
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LGG(N=534); LIHC(N=380); LUAD(N=475); LUSC(N=372); MESO(N=87); OV(N=10);
PAAD(N=185); PCPG(N=184); PRAD(N=503); READ(N=99); SARC(N=265);
SKCM(N=474); STAD(N=396); TGCT(N=156); THCA(N=515); THYM(N=124);
UCEC(N=439); UCS(N=57); UVM(N=80); The sample sizes for normals are:
BLCA(N=21); BRCA(N=98); CESC(N=3); CHOL(N=9); COAD(N=38); ESCA(N=16);
GBM(N=2); HNSC(N=50); KIRC(N=160); KIRP(N=45); LIHC(N=50); LUAD(N=32);
LUSC(N=43); PAAD(N=10); PCPG(N=3); PRAD(N=50); READ(N=7); SARC(N=4);
SKCM(N=2); STAD(N=2); THCA(N=56); THYM(N=2); UCEC(N=46); The mean of each
data set is used to measure the center; (¢) Spearman’s correlation coefficient for
analysis in (Fig. 7b), shown as a function of minimum purity threshold from 0.1 to 0.95
(hypermutators excluded, Online Methods). PMD hypomethylation in TCGA tumors was
captured by the average DNA methylation beta values of common PMD HM450 probes.
(d) Correlation between PMD methylation (average DNA methylation beta value of
HM450 common PMD probes) and the number of Somatic Copy Number Aberration

(SCNA) in TCGA tumor sample (N=9454).
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326 Supplementary Figure 14 Association of LINE-1 break points and PMD methylation

327 (characterized by average of HM450 probes in common PMDs). Rho is Spearman’s
328 correlation coefficient. P-value was calculated using algorithm AS89 implemented in the
329 R software.
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Supplementary Figure 15 (a) Spearman correlation coefficients of Solo-WCGW CpG
methylation and 10 other epigenomic features of IMR90 fibroblast at single CpG scale;
Samples were hierarchically clustered based on distances defined by 1- abs(rho). The
dendrogram of clustering is shown on the bottom with arrow indicating the best and the
2" best correlator with Solo-WCGW CpG. (b) PMD vs HMD methylation average of
Solo-WCGW HM450 probes in TCGA HNSC tumors showing NSD1 wild types and

mutants.
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Supplementary Figure 16 (a) Impact of CpG dinucleotide PMD/HMD location, flanking
CpG density and tetranucleotide sequence context on somatic mutation rate in 100
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Supplementary Figure 18 mRNA expression of DNMT3A and DNMT3B in (a)

ENCODE cell lines and Roadmap Epigenome Consortium (REMC) primary tissues
(each data point corresponds to the expression level for a cell line or primary tissue type)
and (b) All TCGA cancer types with TGCT split into tumors of the embryonic origin
(TGCT-EC) and non-embryonic origin (TGCT-nonEC). This figures shows elevated
DNMT3B expression in hESCs and embryonic carcinomas compared to other tissues
and cancers by over an order of magnitude. Each data point in the box plot represents
the normalized expression level for a cancer sample. Samples sizes for all cancer types
are: ACC(N=79); BLCA(N=427); BRCA(N=1218); CESC(N=310); CHOL(N=45);
COAD(N=329); DLBC(N=48); GBM(N=174); HNSC(N=566); KICH(N=91); KIRC(N=606);
KIRP(N=101); LAML(N=173); LGG(N=534); LIHC(N=424); LUAD(N=576);
LUSC(N=554); MESO(N=87); OV(N=266); PAAD(N=183); PCPG(N=187);
PRAD(N=550); READ(N=105); SARC(N=265); SKCM(N=473); TGCT(N=156);

THCA(N=572); THYM(N=122); UCEC(N=201); UCS(N=57); UVM(N=80);
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Supplementary Figure 19 (a) Rank correlation between three closely-related heart
tissues and two replica of H1 ESC from different studies showing the magnitude of
variation; N=792 non-overlapping 100kbp genomic windows in chromosome 16. (b)
Order of Spearman’s correlation in different chromosomes between the core tumor

samples and the heart tissue samples from three different developmental stages.



